
Enhanced Differential Evolution Using
Center-Based Sampling

Ali Esmailzadeh, IEEE Member
Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (UOIT)
Oshawa, Ontario L1H 7K4

Email: ali.esmailzadeh@uoit.ca

Shahryar Rahnamayan, IEEE Member
Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (UOIT)
Oshawa, Ontario L1H 7K4

Email: shahryar.rahnamayan@uoit.ca

Abstract—The classical Differential Evolution (DE) has showed
to perform efficiently in solving both benchmark functions and
real-world problems. However, DE, similar to other evolutionary
algorithms deteriorate in performance during solving high-
dimensional problems. Opposition-based Differential Evolution
(ODE) was introduced and, in general, has shown better perfor-
mance comparing to classical DE for solving large-scale problems.
In this paper, we propose an enhancement to ODE in order to
improve its ability to solve large-scale problems more effectively.
The proposed modified version of ODE is called Center-Based
Differential Evolution (CDE) which utilizes the exact algorithm
of ODE except replacing of opposite points with center-based
individuals. This paper compares DE and ODE with the proposed
algorithm, CDE. Furthermore, CDE with dynamic range (CDEd)
will be compared to CDE with fixed range (CDEf). Experimental
verifications are conducted on seven well-known shifted large-
scale benchmark functions for dimensions of 100 and 500,
including detailed parameter analysis for CDE. The shifted
version of the functions ensures there is no bias towards the
center of search space, in favor of CDE algorithm. The results
clearly show that the CDE outperforms DE and ODE during
solving large-scale problems, and also clarifies the superiority of
CDEd to CDEf .

I. INTRODUCTION
Differential Evolution (DE) algorithm over the years of

research has showed to be an efficient algorithm comparing to
other population-based algorithms. However, similar to other
evolutionary algorithms, the efficiency of this algorithm is
degraded during tackling with large-scale problems. For these
kind of problems, the efficiency of the algorithm decreases and
it is subject to the curse of dimensionality. On the other hand,
majority of real-world problems are high-dimensional and time
budget in solving them is limited. Many engineering and
scientific fields, such as Finite Elements, Structural Designs,
etc. are bound to deal with large-scale problems. Solving large-
scale problems require great amount of time and resources
due to the computational load and complexity; therefore, any
attempt in constructing an algorithm that enhances solving
large-scale problems decreases time and resources needed to
solve the problem.
In the recent years, there have been extensive research

conducted in the area of accelerating evolutionary algorithms,
such as Opposition-based Differential Evolution (ODE) which
is one of the main focuses of this paper, as a parent algorithm.
ODE has shown good performance comparing to classical DE

in solving large-scale [3] and noisy optimization problems
[6]. In this paper, we want to improve ODE by replacing the
opposite points with the newly introduced promising points,
called Center-based points.
The rest of this paper is organized as follows: the concept of

Center-based Sampling is reviewed and discussed, as well, it is
intuitively explained in Section II. The proposed algorithm is
presented in Section III. The experimental results and analysis
are given in Section IV. Finally, the paper is concluded in
Section V.

II. CENTER-BASED SAMPLING: A REVIEW

In this section, we explain the Center-point and Center-
based sampling regions. These regions were introduced by
Rahnamayan and Wang [5]. They investigated the closeness of
points in a search space from an unknown solution (black-box
problem). They measured the Euclidean distances of the points
to the unknown solution for the different dimensions. They
utilized Monte-Carlo simulation by dividing the [a,b] search
space interval into partitions of 10−3 step-sizes, to represent a
fixed point in a given calculation. For each fixed-point, x, in
each dimension (1, 2, 3, ..., D), they repeat the following steps
106 times (i.e. trials) in order to get measurable results:
1) Generate a uniform-random point, r, and a random
unknown-solution, s, in the search space [a,b].

2) Measure the Euclidean distance of the fixed-point and
the uniform-random point, from the unknown-solution.

3) Depending on which distance measure is smaller, the
appropriate distance variables are updated for calculating
the average distance and probability of closeness, at the
end of the 106 trials.

By Monte-Carlo simulations, they have found that the
probability of points being closer to an unknown solution
(in comparison to uniformly generated points over the entire
space) is much greater towards the center of the search space.
Given the interval of search space as [a,b], shown in Fig. 1,
the center of the interval is formulated by Eq. 1 and Eq. 2,
for dimensions 1 and n, as follows:
For 1D:

c =
(a + b)

2
(1)

2641978-1-4244-7835-4/11/$26.00 ©2011 IEEE

For n-D:
ci =

(ai + bi)
2

(2)

where i = 1, ..., D and D is the dimension of the problem.

Fig. 1. The visual illustration (in 1D) of uniform-random point, x, and the
unknown-solution, s, in the interval [a,b], where c indicates corresponding
center of the search space, c=(a+b)/2.

They observed that as the candidate-solutions got closer to
the center of the search space, the probability of closeness
to the unknown solution rose drastically. Furthermore, they
examined this phenomenon to solve high-dimensional prob-
lems [5]. Interestingly, as the dimensionality of the problem
increased, the probability of closeness to the solution increases
on the center of the search space, as well. They experimented
this concept for large dimensions of 100, 200, 500 and 1000.
Even for low dimension of one, the probability of closeness
to the solution was greater around the center-point. In fact,
according to Fig. 2 [5], there is a specific range in which
the probability started to rapidly increase, for the higher
dimensions. That range was found out to be [0.2,0.8] in a [0,1]
search space interval; which is 60% of the search space, which
falls on the center of the interval. As the dimensionality of the
problem increases, the probability becomes closer to 100%, as
indicated in Fig. 2.

Fig. 2. Probability of closeness of candidate-solution to an unknown solution,
for different interval points and dimensions [5].

Furthermore, the same improvements around the center-
point can be seen with regards to the average distance of
candidate-solutions from an unknown solution. In the Fig. 3,
it can be seen that when the dimensionality of the problem
increases, the average distance of candidate-solutions near and
on the center-point decreases to very low values.

Fig. 3. The average distance of candidate-solution to an unknown solution,
for different high dimensions [5].

However, as the authors have also mentioned, the center-
point is a unique point; therefore, it can only be considered for
s-metaheuristic algorithms, and is not usable for population-
based algorithms [5].
As seen in Fig. 2, for all the various dimensions tested,

the probability graphs start a sharp increase at two specific
points in the range. The authors investigated this magic range
further and found out that the specific points are 0.2 and
0.8 (in [0,1] interval), as indicated previously. They call
the region in the interval [0.2,0.8] the center-based region.
All the probability graphs, for all the different dimensions
intersected at those two exact points in the range. In order
to investigate and experiment further with the center-based
region to find out the feature of points in that region, they
ran the same set of experiments as with center-point, to find
the probability of closeness of uniform-pseudorandom points
generated in the center-based region, and compared them to
random points generated in the entire range of [a,b] (in this
case [0,1]). As seen in Fig. 4, the probability of closeness
of candidate solutions generated in the center-based region,
compared to random points in the entire range, is still very
high; furthermore, as the dimension increases the probability
gets closer to 1.
The phenomenon of center can be intuitively explained.

According to Fig. 1, c is the middle of the search space, which
has divided the entire search interval of [a,b] into sub-intervals
of [a,c] and [c,b]. The candidate-solution x, and unknown
solution s, can each be in different sub-intervals, or they can
both be in the same sub-interval. The chances of either of the
previous cases are 50% since we are dealing with uniform-
random. For the former case, since c is in between x and
s, no matter which sub-interval s belongs to, the Euclidean
distance of x and c to s is |x − s| ≥ |c − s|. Therefore, on
average, in 50% of the times, c is always closer to s, than
x is to s. Therefore, on 50% of the times, c is closer to the
unknown solution. For the rest of the probability, where x and

2642

Administrator
Highlight

Fig. 4. Probability of closeness of candidate generated randomly in the
center-based region, compared to random candidate generated in the entire
range, for dimensions of 1 to 100. [5]

s are in the same sub-interval, then x and c are competing
together for closeness to s. Therefore, any probability of c
closer to s in this scenario, along with the 50% chance in the
first scenario, will only help increasing the chances of c being
closer to s, in overall. Furthermore, as the dimensionality
increases, the rule of addition indicates that the probabilities
of closeness of c to s will increase over the whole dimension,
since the probabilities are added for each dimension of the
problem. That explains why as the dimensionality increases,
the probability of closeness to solution is the highest at the
center of the space, as shown in Fig. 2.
It is important to distinguish between the center-point and

center-based regions introduced and experimented in [5]. As
previously mentioned, center-point cannot be used for p-
metaheuristic algorithms since it considers only one single
point and does not promote or support diversity in population-
based algorithms. However, the center-based sampling can be
utilized in p-metaheuristic algorithms since it can consider
and include population generation of candidate-solutions in
a specific range.
In the next section, we will examine the center-based

concept further and will define a different (dynamic) version
of the center-based region based on definition of the opposite
point.

III. CENTER-BASED DIFFERENTIAL EVOLUTION (CDE)

Before we introduce the proposed method, we the parent
algorithm of the proposed algorithm. The Opposition-Based
Learning (OBL) concept [1] was applied and tested on the
classical DE algorithm by Rahnamayan, et al. [2], called
Opposition-Based Differential Evolution (ODE). The DE al-
gorithm is an evolutionary, population-based algorithm, which,
similar to other evolutionary algorithms, an initial population
of candidate-solutions is generated uniform randomly. The
random population generation can play a role in term of

convergence speed of an algorithm since the distance of the
candidates from the unknown solution determines how fast
an optimal solution can be found. In the ODE algorithm,
the concept of opposition has been used to decrease the
distance from unknown solution by comparing the candidate
solution with its opposite and continuing with the better one. In
steps of DE where a uniform-random population is generated,
the opposites of each candidate-solution is calculated and
populated. Then, from union of the current population and
the opposite one, the fittest candidate-solutions are selected.
Therefore, the current population includes uniform-random
and opposite individuals with the better fitness values. Another
additional modification to DE, by ODE is the generation
jumping based on a new checking variable called generation
jumping rate, Jr, which is constant value in the entire run,
and determines opposition-based generation jumping rate. The
flowchart of ODE is presented in Fig. 5.

Fig. 5. The flowchart presentation of ODE; the gray boxes represent the
components which are added or modified in the original DE algorithm. [6]

As discussed in Section II, the center-point region cannot
be utilized for p-metaheuristic algorithms, since it is a unique
point; therefore, it does not promote diversity required for
population-based algorithms. On the other hand, the center-
based sampling method deals with a specific range within
the entire space, in which uniform pseudorandom points are
generated; therefore, this sampling method can be utilized for
population-based algorithms.
The center-based sampling region which was introduced in

[5] and reviewed in Section II, considers a certain boundary
for the interval of center-based region. More specifically, the
sampling covers the points in [0.2,0.8] for interval of [0,1].
Since the range is set to exact boundaries, it is possible that this
definition of center-based region would not be flexible enough,
as a result, it might not be robust enough for variant problems.
In this paper, we propose a slightly different definition for the
center-based region. In our proposed algorithm, we keep the
same scheme of ODE but we replace opposite points with the

2643

uniform points which are generated randomly in the modified
center-based interval. That region will be changed dynamically
according to the corresponding opposite points.
In reviewing ODE, it was mentioned that for each uniform-

randomly generated candidate-solution, an opposite candidate-
solution was created, during both the population initialization
and generation jumping. More specifically, the opposite point
of candidate-solution x, is denoted x̂ and it is the mirror
reflection of x from the center of space, c. Since ODE was
shown by previous research works to outperform DE in solving
large-scale problems, we would like to use the same algorithm
as a parent algorithm to propose CDE.
In our proposed method, we consider generating a uniform-

random individual in the range between the current candidate
solution and its opposite point. In other words, given the
current candidate solution point of x, and the opposite of
the current candidate point x̂, then the new Center-based
candidate-solution is a uniform-random point generated be-
tween x and x̂. Mathematically, center-based population can
be denoted as follows in Eq. 3:
For n-D:
From opposition concept and Eq.s 1, and 2 the following

can be derived:

xcb
i =

{
xi + (x̂i − xi)× rand(0, 1) if xi ≤ c,
x̂i + (xi − x̂i)× rand(0, 1) otherwise. (3)

where i = 1, ..., D and D is the dimension of the problem.
We call this version of CDE as CDE with Dynamic range

(CDEd).
In order to illustrate this concept, we use the visual pre-

sentation of Center-based interval for 1D in Fig. 6. Moreover,
the 2D presentation of center-based region is shown in Fig.
7. The same definition is used for higher dimensions of the
search space.

Fig. 6. The visualization of the proposed interval in 1D. The Center-
based interval is between the candidate solution x and the opposite candidate
solution, x̂.

The utilized opposite points in ODE are replaced with the
newly generated center-based point. If the convergence speed
of CDE is improved, it is evident that this new segmentation
of the search space and concept of center-based sampling is a
better sampling interval choice.
The following steps explain population generation during

population initialization and generation jumping in CDEd:
1) Uniform-randomly generate a vector of population indi-
viduals in the range [a,b]; this is the current population
(P(n)).

2) Calculate opposite of each of the corresponding indi-
viduals from current population; this forms the opposite
population.

Fig. 7. The visualization of the proposed region in 2D. The Center-based
region is shown by shadowed area.

3) For each dimension, in the interval between each indi-
vidual from the current population and its corresponding
opposite individual, generate a uniform-random point
inside that range; save the generated individual in the
center-based population (CB(n)).

4) Union the current and center-based population (P(n) and
CB(n), respectively. Select n fittest individuals from the
current set.

5) Continue with the rest of DE steps.
The above steps are also performed for CDE with the fixed

range of 60% of the search space (from [5]), called CDE
with Fixed Range (CDEf). However, in CDEf instead of
generating points in the interval of [x,x̂] as with CDEd, we
generate uniform-random points in the middle 60% interval of
the search space. The CDEf interval denoted as the range of
[fa,fb], in search space of [a,b] can be calculated by Eq. 4,
below.

fai = ai + 0.20× (bi − ai)
fbi = ai + 0.80× (bi − ai)

(4)

where i = 1, ..., n and n is maximum dimension (D) of the
problem.
The CDEd algorithm is illustrated in Fig. 8. The opposite

point is calculated based on maximum and minimum values
of the variables in the current population.
Both the ODE and CDE algorithms have utilized generation

jumping. The rate of jumping (Jr) is set manually based on
trial experiments and recommended values. The rate is kept
constant for each of the algorithms, throughout the whole
experiments.
Ultimately, we want to compare the CDEf algorithm with

fixed interval of [fa,fb], which is the 60% middle of the
search space (described in Eq. 4), to CDEd which uses
the dynamic interval of [x,x̂]. We would like to see the
performance of these two different schemes of CDE in solving
problems.
In this paper, we aim to compare CDEd to the classical DE

and ODE in order to investigate the performance of Center-

2644

Fig. 8. Flowchart of the proposed CDEd algorithm, made similar to the
flowchart of ODE. The gray boxes represent addition or modifications to the
parent DE algorithm.

based sampling on ODE. Furthermore, we compare CDEd

with CDEf in order to analyze the effect of using dynamic
range instead of a fix one.

IV. EXPERIMENTAL VERIFICATIONS
In this section, we will investigate performance of the

proposed algorithms CDEd and CDEf , against DE and ODE
in terms of solution accuracy for D = 100 and D = 500. As
well, we will perform parameter analysis on the Jr parameter
in D = 500 for ODE and CDEd, to obtain the optimal value
for the Jr parameter.

A. Control Parameter Settings
All the common parameters of the DE, ODE, and CDE

(both fixed and dynamic), are set to the same values as below,
to have a fair comparison.
• Population size, Np = 100
• Differential amplification factor, F=0.5
• Crossover probability constant, Cr = 0.9
• Strategy, DE/rand/1/bin
• Maximum number of function calls (termination criteria),
MAXNFC=5000×D

B. Benchmark Functions
The utilized seven shifted benchmark functions are box-

constrained high-dimensional problems for minimization as
provided by the CEC’2008 Special Session on Large Scale
Global Optimization [4]. The benchmark functions used in this
paper are the ones used in [3] for large-scale problems. The
functions f1 and f2 are unimodal and the rest of the functions
are multimodal problems. The functions are randomly shifted

to not have any kind of favor or bias towards the center of the
search space, and towards the proposed method. Therefore, for
none of the functions, the solution is located at the center.

C. Simulation Strategy
Similar to other studies in the evolutionary optimization [6],

[8]–[10], for all conducted experiments, trials are repeated 25
times per function per dimension. Each run is continued up to
5000×D function calls and then mean and standard deviation
of the best fitness values are reported.
It is of great importance to note that even though for the

definition of CDEf algorithm, the interval was originally set
as [0.2, 0.8] (for interval [0,1]) [5]; however, in conducting
experiments, the min and max boundaries of each functions
were taken into consideration.
The algorithms DE, ODE are compared once to CDEf and

once to CDEd in dimensions of 100 and 500. As well, CDEf

and CDEd algorithms are compared against each other in
D = 100 and D = 500. In these experiments, the Jr values
for ODE, CDEf and CDEd algorithms are set based on
experiments done previously by other authors. The Jr value
of ODE is set to 0.3, where as, both CDEf and CDEd

algorithms have Jr value of 0.05. These Jr values are set
based on [7].
Furthermore, since there is no detailed experiment done

on Jr parameter analysis in ODE and CDEd algorithms for
D > 100, for a set of problems, we conduct a parameter
analysis experiment to test each algorithm with different Jr

values. From those results the most successful Jr value for
each algorithm will be picked as the benchmark Jr values,
which will be used to compare DE, ODE and CDEd.

D. Results and Analysis
In this sub-section, there are two experimental series pre-

sented, and the results are analyzed. The first experimental
series is concerned with experimenting the CDEd and CDEf

methods to parent algorithms ODE and DE, for high di-
mensions, and conventional Jr parameter value. In the second
experimental series, a detailed parameter analysis of Jr is done
on ODE and CDEd, for high dimension of 500. Furthermore,
the successful Jr values for each algorithm are compared to
each other.

Experimental Series 1: CDEd and CDEf

In this experimental series, DE, ODE, CDEd, and CDEf

are compared for D = 100 and D = 500, with Jr values
set conventionally by previous research work [7]. In these
experiments, Jr value of ODE is 0.3 and for CDE (both
versions), the Jr value is set to 0.05 [7]. The Tables I, II
and III summarize the experimental results. Table I represents
comparison among DE, ODE and CDEd; Table II represents
comparison of DE, ODE and CDEf . Lastly, Table III rep-
resents comparison between the proposed algorithms CDEd

and CDEf . All the tables show the result comparisons for
both dimensions of 100 and 500.

2645

For D=100, as illustrated in Table I, ODE is only suc-
cessful on two out of the seven functions, f2 and f4. All 3
algorithms performs the same on f7 function. Furthermore,
DE and CDEd both outperform ODE on f1 and f6, but
CDEd outperforms the other two algorithms on one function,
f3. These results indicate that in lower dimensions such as
D=100, the proposed algorithm of CDEd is only successful
on three out of seven functions.

TABLE I
MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE OF DE
COMPARED TO ODE AND CDEd (DYNAMIC RANGE), FOR D=100 AND
D=500. THE VALUES OF Jr PARAMETER FOR ODE AND CDEd ARE 0.3
AND 0.05, RESPECTIVELY. THE BEST RESULT FOR EACH FUNCTION IS

HIGHLIGHTED IN BOLDFACE.

D = 100
F DE ODE CDEd

f1 0± (0) 0.02± (0.13) 0± (0)
f2 64.85± (5.85) 29.19± (11.54) 65.03± (6.57)
f3 249.49± (382.99) 1.46E6± (5.26E6) 167.62± (83.77)
f4 559.74± (125.20) 396.97± (186.14) 569.40± (113.05)
f5 6.90E-4± (2.41E-3) 2.1E − 2± (0.049) 0.0015± (0.0060)
f6 0± (0) 0.72± (0.52) 0± (0)
f7 0± (0) 0± (0) 0± (0)

D = 500
F DE ODE CDEd

f1 0± (0) 393.94± (1271.35) 0± (0)
f2 111.93± (5.75) 80.65± (3.32) 95.75± (1.22)
f3 1828.49± (458.30) 6.18E8± (6.70E8) 1670.26± (226.17)
f4 1868.76± (135.15) 2556.85± (145.26) 1630.90± (153.69)
f5 0.16± (0.27) 3.82± (11.05) 0.05± (0.14)
f6 7.62± (1.44) 13.91± (1.06) 7.25± (1.39)
f7 0.06± (0.27) 0.12± (0.49) 0± (0)

For high dimensional problems, such as D=500, according
to results provided in Table I, CDEd outperforms DE and
ODE on five out of the seven benchmark functions. Only on
f2 ODE performs better than CDEd. Furthermore, DE and
CDEd both beat ODE on f1. Table I clearly indicates that the
CDEd algorithm outperforms the DE and ODE methods on
the majority of benchmark functions, for large-scale problems
of D=500.
Further to experimenting CDEd, we compare CDEf to

its parent algorithms DE and ODE. In Table II, results of
comparison are summarized. As the results indicate, for three
of the functions, f1, f3 and f6, CDEf outperforms ODE.
Moreover, on two functions, f1 and f6, CDEf and DE both
had the same best result. Only on two functions f2 and f4,
ODE performed better than the other algorithms. For high
dimension of D=500, CDEf outperforms DE and ODE on
four out of seven functions. DE had the best performance
of the other algorithms on two functions, f1 and f3, while
ODE only outperformed others on one function, f2. These
results clearly indicate that for large-scale problems, CDEf

algorithm performs better than DE and ODE on most of the
functions.
The two proposed algorithms CDEf and CDEd, which

are the winners of two previous tables, are compared against
each other in Table III. For low dimension of D=100, CDEf

algorithm beats CDEd on three of the seven functions, and
both algorithms have the same best result on three of the

TABLE II
MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE OF DE
COMPARED TO ODE AND CDEf (FIXED RANGE), FOR D=100 AND

D=500. THE VALUES OF Jr PARAMETER FOR ODE AND CDEf ARE 0.3
AND 0.05, RESPECTIVELY. THE BEST RESULT FOR EACH FUNCTION IS

HIGHLIGHTED IN BOLDFACE.

D = 100
F DE ODE CDEf

f1 0± (0) 0.02± (0.13) 0± (0)
f2 64.85± (5.85) 29.19± (11.54) 53.16± (5.78)
f3 249.49± (382.99) 1.46E6± (5.26E6) 133.49± (52.79)
f4 559.74± (125.20) 396.97± (186.14) 539.84± (145.57)
f5 6.90E-4± (2.41E-3) 2.1E − 2± (0.049) 0.0016± (0.0046)
f6 0± (0) 0.72± (0.52) 0± (0)
f7 0± (0) 0± (0) 0± (0)

D = 500
F DE ODE CDEf

f1 0± (0) 393.9± (1271.3) 3E − 5± (9E − 5)
f2 111.93± (5.75) 80.65± (3.32) 98.11± (3.34)
f3 1828.49± (458.30) 6.18E8± (6.70E8) 1833.53± (348.32)
f4 1868.76± (135.15) 2556.85± (145.26) 1470.08± (107.13)
f5 0.16± (0.27) 3.82± (11.05) 0.14± (0.30)
f6 7.62± (1.44) 13.91± (1.06) 6.72± (1.19)
f7 0.06± (0.27) 0.12± (0.49) 7.77E-3± (0.033)

functions, f1, f6 and f7. However, as indicated in Table III,
for higher dimensions of D=500, CDEd outperforms CDEf

on five out of the seven functions, f1, f2, f3, f5 and f7.
These results clearly indicate that for large-scale problems,
the CDEd algorithm is the winner algorithm.

TABLE III
MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE OF

CDEf (FIXED RANGE) COMPARED TO CDEd (DYNAMIC RANGE), FOR
D=100 AND D=500. THE VALUES OF Jr PARAMETER FOR BOTH CDEd

AND CDEf IS 0.05. THE BEST RESULT FOR EACH FUNCTION IS
HIGHLIGHTED IN BOLDFACE.

D = 100
F CDEf CDEd

f1 0± (0) 0± (0)
f2 53.16± (5.78) 65.03± (6.57)
f3 133.49± (52.79) 167.62± (83.77)
f4 539.84± (145.57) 569.40± (113.05)
f5 1.57E − 3± (4.65E − 3) 1.48E-3± (6.02E-3)
f6 0± (0) 0± (0)
f7 0± (0) 0± (0)

D = 500
F CDEf CDEd

f1 2.63E − 5± (8.69E − 5) 0± (0)
f2 98.11± (3.34) 95.75± (1.22)
f3 1833.53± (348.32) 1670.26± (226.17)
f4 1470.08± (107.13) 1630.90± (153.69)
f5 0.14± (0.30) 0.05± (0.14)
f6 6.72± (1.19) 7.25± (1.39)
f7 7.77E − 3± (0.033) 0± (0)

To summarize the three tables, considering that the Jr

parameter values are set based on previous research work by
other authors, it is clear that for solving large-scale problems,
the two proposed algorithms CDEf and CDEd outperform
their parent algorithms, DE and ODE. Furthermore, CDEd

also outperforms the CDEf algorithm over large scale prob-
lems.

2646

Experimental Series 2: Parameter Analysis

This experimental series is concerned with parameter anal-
ysis of the Jr parameter values in the ODE and CDEd algo-
rithms. The different Jr parameter values are experimented for
both ODE and CDEd algorithms. The Jr parameter values for
the ODE algorithm are summarized in Table IV. It is apparent
that for the benchmark functions used in this section, it is
better to use 0.05 setting for the Jr parameter of ODE, as
the Jr=0.05 has dominated the other Jr values on five out
of the seven functions. Furthermore, the same test was done
for the CDEd algorithm to determine the best Jr parameter
value, which is summarized in Table V. The results are not
as straight forward compared to the tests for ODE algorithm.
However, it can be concluded that for CDEd algorithm the
better Jr parameter values to use is below 0.05 value.
Finally, based on the parameter analysis experiments done

on the Jr parameter, for both ODE and CDEd, the most
successful Jr values for each of the algorithms are compared
to each other to examine the competition of the successful Jr

values against each other. This comparison is summarized in
Table VI. The results indicate that overall, CDEd based on
its successful Jr values, has better performance than parent
algorithms ODE and DE on four out of seven functions.

V. CONCLUDING REMARKS
The DE method is a well-known p-metaheuristic algorithm

for solving challenging optimization problems. However, DE
is subject to the curse of dimensionality, which its performance
deteriorates as the dimensionality of the problem increases.
The ODE algorithm has shown that it performs better than
classical DE on solving large-scale problems. In a recent
research work, the center-point and center-based sampling
methods were introduced which have shown that the prob-
ability of closeness of a candidate-solution to an unknown
solution, comparing to a random candidate in the entire search
space, is at the highest at the center of search space. This
is specially significant for high-dimensional problems. We
have chosen DE algorithm in this paper since DE is a well-
known global optimization algorithm, used in many research
areas and is a fast and robust algorithm comparing to other
population-based algorithms. In this paper, we proposed a
new modification to the original ODE algorithm, and called
it Center-Based Differential Evolution (CDE). In this method,
we replaced opposite points of ODE with center-based points,
which are generated in the center-based interval. Furthermore,
we define two variants of CDE based on Dynamic range
(CDEd) and Fixed range (CDEf) of center-based regions.
The proposed algorithms were tested on seven well-known
large-scale shifted benchmark functions to compare them with
their parents, namely, DE and ODE. The purpose of testing on
shifted functions was to ensure that there is no bias towards
the center of the search space, and that the optimum solution
can be randomly placed anywhere in the space. The CDEf

algorithm was compared to CDEd, and the results confirmed
that both CDEf and CDEd outperform DE and ODE on

high dimensional problems of D=500. In addition, CDEd

outperforms CDEf on solving large scale problems; whereas,
CDEf outperformed CDEd for low dimensional problems,
such as D=100.
Furthermore, we conducted a detailed parameter analysis

of Jr parameter in both ODE and CDEd algorithms, for
dimension of D = 500. The results picked a winning Jr

value for ODE and a set of winning Jr values for CDEd.
By comparing the winning Jr values for ODE and CDEd, it
has shown that CDEd algorithm has outperformed both DE
and ODE in four out of seven functions.
According to the simulations performed in this paper on the

seven shifted benchmark functions, the results match with our
expectation from earlier research, which indicate better results
for CDE in solving large-scale problems because of using the
center-based sampling.
As a future work, we will consider investigating the

center-based concept (both dynamic and fixed) on other P-
metaheuristic algorithms.

REFERENCES
[1] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for Ma-

chine Intelligence, Int. Conf. on Computational Intelligence for Mod-
elling Control and Automation (CIMCA’2005), Vienna, Austria, Vol.
I, pp. 695-701, 2005.

[2] S. Rahnamayan, H.R. Tizhoosh, M.M.A Salama, Opposition-Based
Differential Evolution, IEEE Transactions on Evolutionary Computa-
tion, Volume 12, Issue 1, Feb. 2008, pp. 64-79.

[3] S. Rahnamayan, G. Gary Wang, Solving Large Scale Optimization
Problems by Opposition-Based Differential Evolution (ODE), WSEAS
TRANSACTIONS on COMPUTERS Manuscript received May. 10,
2008; revised Sep. 18, 2008.

[4] K. Tang, X. Yao, P. N. Suganthan, C. Mac- Nish, Y. P. Chen, C. M.
Chen, Z. Yang, Benchmark Functions for the CEC2008 Special Session
and Competition on Large Scale Global Optimization, Technical Re-
port, Nature Inspired Computation and Applications Laboratory, USTC,
China, http://nical.ustc.edu.cn/cec08ss.php, 2007.

[5] S. Rahnamayan, G. Gary Wang, Center-Based Sampling for
Population-Based Algorithms, IEEE Congress on Evolutionary Com-
putation (CEC’09), pp. 933-938, May 2009.

[6] S. Rahnamayan, H. R. Tizhoosh, M. M.A. Salama, Opposition-Based
Differential Evolution for Optimization of Noisy Problems IEEE Pub-
lications Proceedings of the Congress on Evolutionary Computation
(CEC’06), pp. 6756-6763, 2006.

[7] S. Rahnamayan, H. R. Tizhoosh, M. M.A. Salama, Quasi-Oppositional
Differential Evolution, IEEE Congress on Evolutionary Computation
(CEC’07), Singapore, pp. 2229-2236, 2007.

[8] S. Das, A. Konar, Uday K. Chakraborty, Improved Differential Evolu-
tion Algorithms for Handling Noisy Optimization Problems, Proceed-
ings of IEEE Congress on Evolutionary Computation, CEC2005, Vol.
2, pp. 1691-1698, 2005.

[9] T. Krink, B. Filipič, Gary B. Fogel, Noisy optimization problems - A
Particular Challenge for Differential Evolution?, Proceedings of the
2004 Congress on Evolutionary Computation, CEC2004, Vol. 1, pp.
332-339, 2004.

[10] J. Vesterstrøm and R. Thomsen, A Comparative Study of Differential
Evolution, Particle Swarm Optimization, and Evolutionary Algorithms
on Numerical Benchmark Problems. Proceedings of the Congress on
Evolutionary Computation (CEC’04), IEEE Publications, Vol. 2, pp.
1980-1987, 2004.

2647

TABLE IV
MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE FOR Jr PARAMETER ANALYSIS OF ODE, FOR D=500. THE BEST RESULT FOR EACH

FUNCTION IS HIGHLIGHTED IN BOLDFACE.

F Jr = 0.05 Jr = 0.10 Jr = 0.15 Jr = 0.20
f1 3.52E-6± (4.273E-6) 7.757E − 4± (3.376E − 3) 1.077E − 3± (2.105E − 3) 1.249E − 2± (3.985E − 2)
f2 80.266± (5.208) 79.943± (5.551) 79.679± (4.808) 79.546± (4.053)
f3 1575.803± (336.632) 1635.728± (289.249) 1977.266± (812.865) 1.018E8± (2.241E8)
f4 1608.951± (140.728) 1937.696± (143.757) 2141.821± (165.391) 2278.328± (110.187)
f5 0.489± (1.066) 0.255± (0.339) 0.435± (0.975) 0.244± (0.325)
f6 8.436± (1.528) 9.602± (1.196) 11.137± (0.824) 12.245± (0.991)
f7 1.784E-3± (2.609E-3) 2.172E − 3± (4.639E − 3) 0.031± (0.086) 0.012± (0.036)

F Jr = 0.25 Jr = 0.30 Jr = 0.35 Jr = 0.40
f1 0.527± (1.385) 393.937± (1271.348) 934.727± (1441.596) 2804.920± (2946.949)
f2 78.845± (3.025) 80.654± (3.322) 81.449± (3.687) 82.703± (4.418)
f3 4.500E8± (8.650E8) 6.822E8± (6.697E8) 9.085E8± (9.051E8) 1.649E9± (1.559E9)
f4 2459.243± (169.512) 2556.856± (145.260) 2630.505± (147.965) 2746.224± (143.123)
f5 0.474± (0.871) 3.823± (11.049) 10.623± (16.083) 28.308± (41.682)
f6 13.226± (0.872) 13.910± (1.060) 15.512± (1.098) 16.605± (0.785)
f7 0.070± (0.197) 0.122± (0.488) 0.045± (0.096) 0.124± (0.345)

TABLE V
MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE FOR Jr PARAMETER ANALYSIS OF CDEd , FOR D=500. THE BEST RESULT FOR EACH

FUNCTION IS HIGHLIGHTED IN BOLDFACE.

F Jr = 0.01 Jr = 0.02 Jr = 0.03 Jr = 0.04
f1 1.096E − 5± (3.43E − 5) 1.80E − 5± (6.39E − 5) 1.33E − 4± (6.53E − 4) 8.72E − 6± (1.89E − 5)
f2 95.103± (1.26) 95.089± (0.813) 95.278± (0.921) 95.660± (0.785)
f3 1.789E3± (4.429E2) 1.809E3± (3.782E2) 1.627E3± (2.133E2) 1.699E3± (3.074E2)
f4 1.532E3± (1.382E2) 1.604E3± (1.062E2) 1.635E3± (1.457E2) 1.640E3± (1.449E2)
f5 0.111± (0.212) 0.140± (0.318) 0.188± (0.307) 0.067± (0.117)
f6 6.660± (1.137) 6.464± (1.010) 6.735± (1.414) 6.709± (1.042)
f7 0± (0) 0± (0) 0± (0) 0± (0)

F Jr = 0.05 Jr = 0.06 Jr = 0.07 Jr = 0.08
f1 7.12E-6± (1.095E-5) 8.20E − 6± (1.55E − 5) 1.13E − 5± (1.82E − 5) 1.22E − 5± (1.91E − 5)
f2 95.749± (1.219) 95.908± (0.684) 95.836± (0.663) 95.904± (0.723)
f3 1.670E3± (2.262E2) 1.839E3± (3.843E2) 1.774E3± (3.419E2) 1.726E3± (2.232E2)
f4 1.630E3± (1.537E2) 1.709E3± (1.711E2) 1.694E3± (2.539E2) 1.717E3± (1.309E2)
f5 0.051± (0.142) 0.137± (0.217) 0.160± (0.310) 0.114± (0.195)
f6 7.255± (1.394) 7.263± (1.299) 7.076± (1.091) 6.957± (1.333)
f7 0± (0) 0± (0) 0± (0) 0± (0)

F Jr = 0.09 Jr = 0.10
f1 1.81E − 5± (2.43E − 5) 4.28E − 5± (1.22E − 4)
f2 95.743± (0.919) 95.664± (0.796)
f3 1.824E3± (3.576E2) 1.857E3± (3.338E2)
f4 1.795E3± (2.110E2) 1.681E3± (1.641E2)
f5 0.050± (0.095) 0.072± (0.183)
f6 6.563± (1.292) 6.954± (1.076)
f7 0± (0) 0± (0)

TABLE VI
MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE OF DE COMPARED TO ODE WITH Jr = 0.05, AND CDEd WITH Jr VALUES FROM 0.01

TO 0.05, IN D=500. THE Jr VALUES USED FOR ODE AND CDEd ARE BASED ON PARAMETER ANALYSIS RESULTS FOR THE CORRESPONDING
ALGORITHMS ACCORDING TO TABLES IV AND V. THE BEST RESULT FOR EACH FUNCTION IS HIGHLIGHTED IN BOLDFACE.

DE ODE CDEd

F Jr = 0.05 Jr = 0.01 Jr = 0.02 Jr = 0.03

f1 0± (0) 3.52E − 6± (4.273E − 6) 1.096E − 5± (3.43E − 5) 1.80E − 5± (6.39E − 5) 1.33E − 4± (6.53E − 4)
f2 111.93± (5.75) 80.266± (5.208) 95.103± (1.26) 95.089± (0.813) 95.278± (0.921)
f3 1828.49± (458.30) 1575.803± (336.632) 1.789E3± (4.429E2) 1.809E3± (3.782E2) 1.627E3± (2.133E2)
f4 1868.76± (135.15) 1608.951± (140.728) 1.532E3± (1.382E2) 1.604E3± (1.062E2) 1.635E3± (1.457E2)
f5 0.16± (0.27) 0.489± (1.066) 0.111± (0.212) 0.140± (0.318) 0.188± (0.307)
f6 7.62± (1.44) 8.436± (1.528) 6.660± (1.137) 6.464± (1.010) 6.735± (1.414)
f7 0.06± (0.27) 1.784E − 3± (2.609E − 3) 0± (0) 0± (0) 0± (0)

Jr = 0.04 Jr = 0.05
f1 8.72E − 6± (1.89E − 5) 7.12E − 6± (1.095E − 5)
f2 95.660± (0.785) 95.749± (1.219)
f3 1.699E3± (3.074E2) 1.670E3± (2.262E2)
f4 1.640E3± (1.449E2) 1.630E3± (1.537E2)
f5 0.067± (0.117) 0.051± (0.142)
f6 6.709± (1.042) 7.255± (1.394)
f7 0± (0) 0± (0)

2648

